Spectral properties of random reactance networks and random matrix pencils
نویسندگان
چکیده
منابع مشابه
Random Matrix Pencils, Branching Points, and Monodromy
We define complex projective n-space CP as C \ {0} under the equivalence relation (z0 : z1 : ... : zn) ∼ (cz0 : cz1 : ... : czn) where c ∈ C\{0}. A complex projective curve is then the set of points (a0 : a1 : ... : an) ∈ CP such that p(a0, a1, ..., an) = 0 for a fixed complex homogeneous polynomial p(z0, z1, ..., zn). Such a curve is a 2-dimensional, real, orientable Riemannian manifold, or Ri...
متن کاملSpectral Properties of Directed Random Networks with Modular Structure
We study spectra of directed networks with inhibitory and excitatory couplings. We investigate in particular eigenvector localization properties of various model networks for different values of correlation among their entries. Spectra of random networks with completely uncorrelated entries show a circular distribution with delocalized eigenvectors, whereas networks with correlated entries have...
متن کاملSpectral Sparsification of Random-Walk Matrix Polynomials
We consider a fundamental algorithmic question in spectral graph theory: Compute a spectral sparsifier of a random-walk matrix-polynomial
متن کاملSpectral Smoothing via Random Matrix Perturbations
We consider stochastic smoothing of spectral functions of matrices using perturbations commonly studied in random matrix theory. We show that a spectral function remains spectral when smoothed using a unitarily invariant perturbation distribution. We then derive state-of-the-art smoothing bounds for the maximum eigenvalue function using the Gaussian Orthogonal Ensemble (GOE). Smoothing the maxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and General
سال: 1999
ISSN: 0305-4470,1361-6447
DOI: 10.1088/0305-4470/32/42/314